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Systematic evaluation of fMRI data-
processing pipelines for consistent
functional connectomics

Andrea I. Luppi 1,2,3,4 , Helena M. Gellersen5,6, Zhen-Qi Liu 4,
Alexander R. D. Peattie 1,2, Anne E. Manktelow 1,2, Ram Adapa 1,2,
Adrian M. Owen7,8, Lorina Naci 9, David K. Menon 1,
Stavros I. Dimitriadis 10,11,12,13,14,15,16,17 & Emmanuel A. Stamatakis 1,2,17

Functional interactions between brain regions can be viewed as a network,
enabling neuroscientists to investigate brain function through network sci-
ence. Here, we systematically evaluate 768 data-processing pipelines for net-
work reconstruction from resting-state functionalMRI, evaluating the effect of
brain parcellation, connectivity definition, and global signal regression. Our
criteria seek pipelines that minimise motion confounds and spurious test-
retest discrepancies of network topology, while being sensitive to both inter-
subject differences and experimental effects of interest. We reveal vast and
systematic variability across pipelines’ suitability for functional connectomics.
Inappropriate choice of data-processing pipeline can produce results that are
not onlymisleading, but systematically so,with themajority of pipelines failing
at least one criterion.However, a set of optimal pipelines consistently satisfy all
criteria across different datasets, spanning minutes, weeks, and months. We
provide a full breakdown of each pipeline’s performance across criteria and
datasets, to inform future best practices in functional connectomics.

The human brain is a remarkably complex system, comprising a large
number of regions interacting over time. To address this challenge
andobtain insights about distributedbrain function anddysfunction,
neuroscientists have turned to network science, whereby different
parts of the brain can be viewed as nodes in a network, and the

statistical relationships between them are used to represent con-
nections between nodes1–5. This powerful approach uses graph the-
ory to quantify key aspects of brain network organisation in vivo,
illuminating the neurobiological underpinnings of healthy and
pathological cognition, behaviour and individual differences6–12. In
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particular, resting-state functional MRI (rs-fMRI) is a very popular
imaging tool, due to its excellent spatial resolution and wide
applicability13: being task-free, it can be easily administered even to
challenging populations, from in-utero foetuses14 to severely injured
and even unconscious patients15–17. Indeed, aberrant functional con-
nectivity patterns have been observed in many neurological and
psychiatric conditions18–22.

However, recent studies have highlighted how different analysis
workflows can lead to sometimes drastically different conclusions
about the same neuroimaging dataset23, owing to a vast pool of pos-
sible methodological choices which effectively constitute a combina-
torial explosion problem24. Crucially, such a combinatorial explosion
also plagues network analyses of the human brain: even beyond sub-
stantial differences introduced by data preprocessing and denoising
procedures25,26, a wide variety of approaches have been proposed to
derive brain networks from preprocessed functional neuroimaging
data27,28. The very definition of nodes in brain networks is con-
troversial: although fMRI voxels haveno intrinsic biologicalmeaning, it
is well-established based on both functional involvement and lesion
studies but also cellular, molecular, and fibre architecture that the
brain exhibits biologically meaningful regional organisation, such that
voxels can be grouped together into anatomically distinct areas24,29–31.
However, there is yet no consensus on the most appropriate parcel-
lation of the human brain, or the number and spatial extent of brain
regions, or whether they should be discrete or overlapping, spatially
contiguous or discontiguous24,30,32–34. Similar difficulties arise for the
definition of functional connections (edges) between nodes: how to
quantify them, which ones to retain for analysis, and whether to
emphasise the presence/absence of connections (binary network) or
their relative strength (weighted network)21,27, highlighting the intri-
cacies of this issue32. This challenge has practical consequences: even
with high-quality data, a poor choice of network construction pipeline
may produce misleading conclusions about neurobiology and func-
tional organisation, and possibly misinform biomarker discovery and
clinical practice. Thus, to ensure the value of graph-based estimates as
clinical biomarkers, it is of paramount priority to establish what is the
most appropriate way to construct a functional brain network from rs-
fMRI data.

Reliability of network topology is of fundamental importance for
any subsequent analysis of network properties35: any pipelines that
recover vastly different topologies from two scans of the same indi-
vidual taken within the same hour, are liable to produce misleading
results when used to associate network properties with behavioural
traits13 or clinical outcomes36. Thus, identification of reliable network
construction pipelines represents a fundamental prerequisite for both
network-based investigation of individual differences using functional
neuroimaging37,38 and subsequent efforts aimed at clinical
translation39. Existing scientific work comparing different network
construction steps typically focusedon specific global or local network
properties (e.g., modularity, small-world character, global or local
efficiency, down to individual edges35) and evaluated the different
alternatives by maximising the intra-class correlation of the adopted
global or local network properties30,35,40–50.

However, these approaches both have limitations. On the one
hand, focusing on local aspects (individual edges, node-level proper-
ties) runs the risk of “missing the forest for the trees”46, because net-
works are more than just collections of edges: rather, the way that
edges are organised gives rise to micro-, meso- and macro-scale
structure, which is precisely whatmakes network-based approaches so
powerful. On the other hand, focusing on specific high-level properties
of the network will inevitably limit the generalisability of results,
because a vast and ever-growing array of network properties can be
defined and used to obtain insights about brain function51,52, but there
is no guarantee that recommendations pertaining to one will also
apply to others.

In the present study, we introduce a framework to explicitly
address and tame the combinatorial explosion. First, we evaluate
network construction pipelines end-to-end, rather than restricting our
attention to individual steps in isolation, asmost previous studies have
done. Second, we base our evaluation on the network’s topology, that
is, the network’s organisation as a whole. For this purpose, we take
advantage of the recently introduced “Portrait divergence” (PDiv)
measure of dissimilarity between networks53. This information-
theoretic measure simultaneously takes into account all scales of
organisation within a network, from local structure to motifs to large-
scale connectivity patterns. Therefore, it incorporates all aspects of
network topology, enabling us to go beyond the use of specific and
arbitrarily-chosen graph-theoretical properties.

Third, test–retest reliability is a necessary but arguably not suffi-
cient condition for a pipeline to be suitable for functional
connectomics54. In particular, test–retest reliability would beof limited
value if it were driven simply by constant but unimportant features.
Rather, a suitable pipeline should also be able to detect meaningful
experimental differences, when such exist. Therefore, we seek to
identify network construction pipelines thatminimise spurious (noise-
or motion-induced) differences between brain networks of the same
individual across repeated scan sessions, but that also satisfy addi-
tional criteria of biological relevance: sensitivity to individual differ-
ences, clinical contrasts of interest and experimental manipulations -
here operationalised by pharmacological interventionwith the general
anaesthetic propofol. Fourth, to ensure the generalisability of our
results36, eachpipeline is evaluated across two independent test–retest
datasets, spanning short (45minutes), medium (2–4 weeks) and long-
term delays (5-16 months). Our focus here is not on preprocessing/
denoising approaches to fMRI data (where a vast literature exists55–58),
but rather on the workflow that begins with preprocessed fMRI data
and results in a brain network. However, to ensure that our recom-
mendations can be further generalised to datasets acquired with dif-
ferent scanning parameters and preprocessed with different methods,
we also require that optimal pipelines should meet all the above-
mentioned criteria in an additional independent dataset (test–retest
dataset from the Human Connectome Project), which was acquired
with higher spatial (2mm) and temporal resolution (TR =0.72 s) than
the other datasets; preprocessed using a surface-based rather than
volume-based workflow; and denoised with a different method than
the anatomical CompCor used for ourmain datasets (FIX-ICA, which is
designed to affect artifacts specifically and avoidmodifying the neural
signal of interest)55,59,60.

Through this comprehensive, multi-criterion approach, we
compare the topologies of functional brain networks obtained from
systematic combinations of different options at each step in the
network construction process. (i) First, given our interest in
robustness and generalisability, we conduct all our analyses on two
versions of the same data: with versus without the controversial
preprocessing step of global signal regression (GSR)61. This allows us
to make recommendations that are specific for GSR-processed data,
or for non-GSR-processed data, as well as identifying network pro-
cessing pipelines that are suitable for both. (ii) Definition of network
nodes: from discrete parcellations of spatially circumscribed
regions-of-interest based on anatomical landmarks, or functional
characteristics (combination of local homogeneity and global gra-
dients of connectivity, from combined resting-state and task-based
fMRI), or multimodal structural and functional MRI features
accounting for cortical myeloarchitecture, functional activation,
connectivity and topography; or from continuous, spatially over-
lapping maps from spatial Independent Components Analysis24,29.
(ii) Number of nodes: approximately 100, 200 or 300-400, for each
type of parcellation. (iv) Two different ways to define network edges
from BOLD time-series: Pearson correlation or mutual information.
(v) Eight different approaches to filter the network’s edges: by
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imposing a pre-specified density (retaining 5%, 10%, or 20% of total
edges, or matching the density of the structural connectome), or
imposing a pre-specifiedminimum edgeweight (0.3 or 0.5), or using
data-driven methods (Efficiency Cost Optimisation, ECO and
Orthogonal Minimum Spanning Trees, OMST, two different strate-
gies to define and then optimise the balance between network effi-
ciency and wiring cost)62–64. (vi) Use of either binary or weighted
networks. Figure 1 illustrates the set of choices across the investi-
gated network construction steps that influence the construction of

a functional brain network, yielding a total set of 768 pipelines
(2 × 4 × 3 × 2 × 8 × 2). We assess each of these pipelines across 18
distinct combinations of criteria and datasets, yielding a total of
13,824 unique evaluations, which we make available to the reader
through an interactive Pipeline Selection Tool (Supplemen-
tary Data 2).

Overall, a strength of our current study is our ability to make
recommendations for the choice of pipelines end-to-end, not only on
the basis of theoretical gold standard metrics (test–retest) but also on
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FunctionalICA
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Fig. 1 | Overview of the steps to turn functional MRI data into a network.
Starting from preprocessed and denoised data, the following steps are involved. (i)
Use of data with vs without global signal regression (GSR), in addition to other
denoising protocol (aCompCor for NYU-short, NYU-long and Cambridge datasets;
FIX-ICA for HCP); (ii) Definition of nodes (based on anatomical features, local and
global functional characteristics, or multimodal features; or Independent Compo-
nents Analysis); (iii) Choice of number of nodes (approximately 100, 200, or 400);
(iv) Definition of connectivity measure (from Pearson correlation or mutual infor-
mation); (v) Choice of edges to retain (8 filtering schemes considered, based on a
priori choices of network density, or minimum edge weight, or data-driven stra-
tegies to optimise the balance betweennetwork efficiency andwiring cost), (vi) Use

of binary or weighted edges. In total, we consider 2 × 4 × 3 × 2 × 8 × 2 = 768 unique
pipelines. For eachpipeline, the resulting functional networks are compared for the
same subject across different time-spans (minutes, weeks, or months) using the
Portrait Divergence. A network portrait for a binary network is a matrix B whose
rows each correspond to a histogram obtained by thresholding the matrix of
shortest paths between the networks’s constituent nodes, at each path length l
between0 and the network’s diameter L, such that entryBl,k encodes the number of
nodes that have k nodes at distance l. For weighted networks, the histogram is
obtained by binning (see Methods). Illustration of parcellations adapted from
refs. 34 and 44; illustration of Portrait Divergence adapted from ref. 53.
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the basis of practical relevance:meaningful inference about changes in
brain functional network topology and individual differences, and
robustness and generalisability. To anticipate our main findings, we
discovered large and systematic variability among pipelines’ ability to
recover a reliable network topology, with the majority of pipelines
failing to meet at least one criterion. Choice of an inappropriate net-
work construction pipeline can lead to results that are not only mis-
leading (statistically significant in the opposite direction as the true
effect), but replicably so (being observed in two independent data-
sets).While our results show that an uninformed choice of pipelinewill
likely be suboptimal, we also identified a number of pipelines that
satisfy all our criteria, in all four test–retest comparisons,making them
suitable candidates for functional connectomics and biomarker dis-
covery. Through this multi-dataset, multi-criteria, multi-scale and
multi-step approach, we provide a comprehensive set of benchmarks
for trustworthy functional connectomics.

Results
We used an information-theoretic measure of distance between net-
work topologies across scales, termed Portrait divergence (PDiv), to
systematically compare 768 alternative network construction pipe-
lines in terms of their ability to recover similar brain network topolo-
gies from functional MRI scans of the same individual across minutes
(NYU dataset, same-session scans), weeks (Cambridge dataset), or
months (NYU dataset, between-sessions comparison) (see ”Methods”
section and Figs. S1–2 for examples of network portraits and their
divergence). Additionally, we considered an additional dataset (HCP
test–retest) that was acquired with higher spatial (2mm isotropic) and
temporal resolution (0.72 s TR); with longer duration (1200 volumes);
denoised using FIX-ICA instead of aCompCor; and parcellated on the
surface rather than in volumetric space, as for the other datasets65–67.
Our end-to-end approach allowed us to simultaneously assess the
effects of parcellation type and number of nodes; connectivity quan-
tification, thresholding and binarisation; and global signal regression;
while ensuring robustness to aspects suchas acquisition, timebetween
test and retest and denoising method.

Being grounded in information theory, the Portrait divergence
between two networks can be interpreted as measuring how much
information is lost when using one network to represent another: it
ranges from0 (no information loss) to 1 (complete information loss)53.

To identify suitable pipelines, we required each of the following
criteria to be met:

• Criterion (I): Avoiding spurious differences (“PDiv ranking”). Since
the two networks that we consider are derived from different
scans of the same healthy individuals under conditions in which
no experimentally meaningful changes in functional network
topology are expected, we aim to identify pipelines that minimise
test–retest PDiv. We consider pipelines as candidates for optimal
if they are in the top 20% in terms of the average PDiv rank cal-
culated across all test–retest intervals.

• Criterion (II): Detecting true experimental differences (“propo-
fol”). Suitable pipelines should detect a significant effect for pro-
pofol, in the right direction, in both propofol datasets, i.e., a
pipeline is excluded if it fails to detect the expected effect (greater
change between wakefulness and anaesthesia than between two
awake scans) in either of the two propofol datasets.

• Criterion (III): Detecting inter-individual differences (“within-
between”). A pipeline fails this criterion if the resulting networks
are more similar between than within subjects more than 50% of
the times, for any of the four test–retest datasets.

• Criterion (IV): Avoidingmotion-induced differences (“motion”). A
pipeline fails this criterion if its PDiv has a significant correlation
with differences in head motion in any of the four test–retest
datasets.

• Criterion (V): Non-empty networks. As a final check, we also
exclude any pipelines that remove all connections from a
network, in any of the four test–retest datasets.

These criteria also incorporate the need for recommendations to
be generalisable across datasets and acquisition/preprocessing choi-
ces, since we only consider a criterion to be met if it is met in all the
relevant datasets.

A summary of all pipeline characteristics can be found in the
interactive Pipeline Selection Tool (Supplementary Data 2). We pro-
vide an Excel spreadsheet with an interactive table, including filters
that allow selection based on multiple criteria at once to identify
pipelines that adhere to the specific criteria desired by the reader. We
encourage readers to view the interactive table concurrently with the
results described below, as this will allow a closer inspection of asso-
ciations between a pipeline’s specific network processing choices and
the desirable properties described in each subsection of the Results. A
user guide for the interactive Pipeline Selection Tool (Supplementary
Data 2) is also included in the Supplementary Material.

Portrait Divergence identifies drastic and systematic variability
across pipelines’ capacity to avoid spurious differences
For each dataset, Fig. 2 illustrates the distributions of group-mean
test–retest similarities of network topologies (portrait divergence)
across the full set of 768pipelines (See Fig. S3-30 for the distributionof
PDiv across pipelines, broken down by network construction step, for
each dataset). Clearly, two patterns can be observed. First, network
construction pipelines differ widely in how well they are able to
recover the same network topology across different scans of the same
individual, on average - whether on a timescale of minutes, weeks, or
months. The worst pipelines induce a greater than five-fold increase in
topological dissimilarity (PDiv) between functional connectomes of
the same individual, compared with the best-performing ones.

Second, our results indicate high consistency across the four
test–retest comparisons considered here, in terms of which data-
processing steps feature prominently among the pipelines that are
best (and worst) at minimising the average within-subject PDiv. Cor-
relation between all pipelines’ ranks across time intervals revealed very
high consistencybetween all datasets (Spearman’s ρ ranging from0.73
to0.97, allp = 2.2 × 10−16 (Fig. 3), indicating thatpipelines’ suitability for
network construction is not dataset-specific but rather can generalise
to independent groups of individuals - spanning time intervals from
hours to months. We view a small PDiv in these datasets as a desirable
property: even though learning and plasticity could account for some
amount of connectome reorganisation over weeks or months in
healthy adults, such factors cannot plausibly be expected to be the
cause of any network-wide reorganisation observed within the course
of a single hour (in the absence of any intervention), which should
instead be treated as unwanted noise.

Sensitivity to experimental differences: Low-PDiv pipelines are
more likely to detect pharmacologically-induced connectome
reorganisation
We have shown that network construction pipelines vary drastically
and systematically in their robustness to noise-induced changes in the
functional connectomes of the same individuals scanned multiple
times. However, thisminimisation of noise-induced differences should
not come at the expense of also minimising meaningful changes in
network topology, such as control-patient contrasts (an example of
this would be a pipeline that never detects any changes). Rather, a
good pipeline should simultaneously minimise noise-induced differ-
ences, while remaining sensitive to true ones. In other words,
test–retest reliability is not the only criterion that neuroscientists need
to consider for their choice of network construction pipelines:
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Fig. 2 | Distributionofgroup-averageportrait divergence values for eachof 768
alternative network construction pipelines, across different time intervals.
From top to bottom: Cambridge dataset (rescanwithin 2–4weeks).NYU short-term
dataset (rescan within 45minutes). NYU long-term dataset (rescan within
16months; average 11.4);HCPdataset (rescan 1–11months). Right-side: highlighting
the top 5 (lowest PDiv) and bottom 5 performers (highest PDiv). Each data-point

represents one pipeline (n = 768). Red lines mark 2 standard deviations from the
mean of the distribution. Box plot centre line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range. GSR Global Signal Regression, OMST
Orthogonal Minimal Spanning Trees, PDiv Portrait Divergence. Source data are
provided as a Source Data file.
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ultimately, the resulting networks need to also demonstrate empirical
usefulness by providing neurobiologically meaningful results43,44. An
ideal pipeline would therefore strike a balance between sensitivity to
experimental manipulations or contrasts of interest on the one hand,
and low portrait divergence in test–retest over relatively short periods
of time in healthy individuals and under the same test conditions on
the other hand. Therefore, in addition to identifying pipelines that do
notdetect differenceswhenweknow that there shouldbenoneoronly
minor ones (best exemplified by test–retest scanning within the same
hour), we should find pipelines that can also detect a difference, when
we know that a difference must be present: we need to combine a low
rate of false positives (low test–retest PDiv) with a low rate of false
negatives.

Perhaps the most drastic possible difference that can be induced
between two scans of the same individual, is that between con-
sciousness and unconsciousness. General anaesthetics such as the
intravenous agent propofol can rapidly and reversibly induce a state of
unconsciousness, whereby the subject is behaviourally unresponsive
and has no subjective experiences. There is arguably no short-term,
reversible alteration of the mind that is so all-encompassing, and it
cannot be expected to leave the functional connectome unaltered.
Therefore, if a pipeline is unable to detect anaesthetic-induced dif-
ferences in the topology of the functional connectome, we can rea-
sonably conclude that it is not sensitive enough for use in network
neuroscience.

Following this rationale, we compared the PDiv from the NYU-
short dataset (two scans within the same hour) against the PDiv
observed between an awake rs-fMRI scan, and a second scan of the
same individuals while under propofol-induced general anaesthesia
(also acquired within the same visit). We seek to identify pipelines that
produce significantly greater PDiv between an awake and an anaes-
thetised scan of the same individual, than between two awake scans
acquired at a comparable distance in time. To ensure the reliability of

our approach, we repeat this analysis for two independent datasets of
propofol anaesthesia to further bolster the reproducibility and gen-
eralisability of our findings.

Across both datasets, our results suggest that pipelines with
lower PDiv also tend to have t-scores reflective of the expected
effect of propofol (Fig. 4), as demonstrated by significant correla-
tions between short-term test–retest PDiv (based on the NYU
dataset) and t-scores both for the Western (ρ = 0.34, p = 2.2 × 10−16)
and the Cambridge propofol datasets (ρ = 0.27, p = 4.4 × 10−14). As
control test–retest PDiv becomes larger, t-scores also seem to
become more variable. Reassuringly, we identified multiple pipe-
lines that provide the expected effect in both datasets (Fig. 4, green
dots). Intriguingly, however, we also identified a number of large-
PDiv pipelines that detect a statistically significant difference
between test–retest and anaesthesia, but in the opposite direction:
that is, greater connectome reorganisation between two awake
scans, than between an awake and an anaesthetised scan (Fig. 4, red
triangles). In other words, these pipelines produce networks that are
actively misleading about what we have strong reason to believe
must be the ground truth (because there is a very substantial dif-
ference introduced by anaesthesia, reflected in the suspension of
the brain’s input-processing abilities and cognitive function more
broadly). These pipelines can be found in the interactive Pipeline
Selection Tool (Supplementary Data 2; pipelines labelled “Opposite”
in the columns Status Propofol West and Status Propofol Cam).
Worryingly, we find that a non-negligible number of pipelines (38)
produce the opposite of the expected effect for both propofol
datasets - thereby returning results that are systematically mis-
leading, and highlighting the dangers of an inappropriate choice of
network construction workflow. Of note, all the consistently mis-
leading pipelines use an absolute threshold; all but three use
weighted edges; and 24/47 use mutual information to quantify
connectivity. Overall, 85 pipelines show the expected effect for both

Fig. 3 | Rank-based correlations of the pipelines’ performance across datasets.
PDiv portrait divergence, HCP Human Connectome Project data, NYU New York
University dataset. All p = 2.2 × 10−16 (two-sided) from Spearman correlation. Each

data-point represents one pipeline (n = 768). Shading indicates standard error of
the fitted line tomodel the linear relationship between the two respective variables.
Source data are provided as a Source Data file.
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propofol datasets, thereby satisfying this criterion, whereas 455
pipelines are neutral (failing to detect statistically significant dif-
ferences in both propofol datasets).

Sensitivity to inter-individual differences
Anothermeans bywhich the adequacy of a pipelinemay be assessed is
by comparing PDivwithin subjects (scan 1 vs. scan2 for subject 1, scan 1
vs. scan 2 for subject 2, etc…) and PDiv between subjects (subject 1 vs.
subject 2, etc…). The proportion of participants for whom the within-
subjects (WS) PDiv is smaller than between-subjects (BS) PDiv may be
used as an additional criterion of pipeline quality, with the rationale
that even after accounting for bona fide changes due to plasticity and
learning, an individual’s functional connectome should not differ from
itself at another point in time, more than it differs from the con-
nectomes of other individuals.

Our results suggest that pipelineswith smaller PDiv are also better
at producing networks that are sensitive to individual differences, such
that the same subject’s brain network diverges less from the same
subject’s network than from those of other people. This was the case
for the NYU short test–retest data (ρ = −0.31, p = 2.2 × 10−16), the
medium-term test–retest time interval for the Cambridge dataset
(ρ = −0.44, p = 2.2 × 10−16), the NYU long test–retest data (ρ = −0.28,
p = 2.2 × 10−16) and the HCP dataset (ρ = −0.51, p = 8.08 × 10−9; Fig. 5).

Passing and failing pipelines on the basis of this within-between
criterion can be found in the interactive Pipeline Selection Tool
(Supplementary Data 2; column “Criterion within-between all”). The
Pipeline Selection Tool also lists the proportion of participants in a
given pipeline for which within-subject PDiv is smaller than between-
subjects PDiv in columns Within-between Cam (%), Within-between
NYU short (%), Within-between NYU long (%) andWithin-between HCP
(%). In the Cambridge dataset, 72 pipelines were excluded based on
this criterion. This was the case for 62 in the NYU short-term
test–retest data and for 67 for the NYU long-term data as well as for
39 pipelines in the HCP data. In total, on the basis of the overall within-
between criterion across datasets, 159 unique pipelines were excluded
and 609 were retained.

Avoiding motion confound
As a further criterion, we sought to identify and exclude pipelines
whose PDiv is significantly correlated with differences in subject
motion (mean framewise displacement). For the Cambridge dataset,

45 pipelines showed a significant correlation between PDiv andmotion
(magnitude of the Spearman correlation coefficient ρ ranging between
0.60 and −0.67). For the NYU short-term dataset, 17 pipelines exhib-
ited a significant correlation between PDiv and motion (magnitude of
the correlation ranging between 0.48 and −0.57). For the NYU long-
term dataset, 24 pipelines exhibited a significant correlation between
PDiv andmotion (magnitude of the correlation ranging between −0.53
and 0.56). Finally, for the HCP dataset we found that PDiv and motion
were correlated significantly in 59 pipelines (ρ between −0.38
and 0.53).

It is argued in the literature thatGSR canhelp tomitigate the noise
inducedby subjectmotion42,45.When contrasting all pipelineswithGSR
against those without GSR, no significant difference in the strength of
the correlation (absolute ρ-statistic) between PDiv and motion based
on this option was found in the Cambridge (t(752) = 0.03, p =0.973,
d ~ 0), theNYU short test–retest (t(700) = 1.42,p = 0.157,d =0.11) or the
NYU long-term test–retest (t(700) = 0.75, p =0.453, d = 0.06). That is,
whether GSR was or was not applied, this decision had no bearing on
the degree to which test–retest portrait divergence was associated
withmotion, on average across all pipelines. However, in theHCPdata,
there was a small but significant effect of GSR on themagnitude of the
correlation between motion and PDiv (t(684) = −3.89. p = 1.09 × 10−4,
d = −0.29), showing a stronger association between PDiv andmotion in
pipelines without GSR than with GSR.

Avoiding empty networks
Pipelines employing an a priori threshold on the strength of edges,
rather than on their density (i.e., removing all edges with weight below
a pre-specified value, also known as an “absolute” threshold) run the
risk of removing all edges in the network, if none surpass the threshold
value. This would be unquestionably incorrect, but it is conceivable
that such an occurrence might never materialise in practice. Indeed,
we found that this never occurred when edge weights were defined in
terms of Pearson correlation. However, empty networkswere returned
for at least one subject by a total of 68 unique pipelines employing
mutual information for edge weight definition (50 occurrences in the
NYU short test–retest, 52 occurrences in the NYU long test–retest, 68
in the HCP dataset, eight in the Cambridge dataset). As expected, all of
these pipelines used absolute threshold values: mostly with the 0.5
threshold, but for 20 pipelines this was also the case for the more
lenient 0.3 threshold (reported in the interactive Pipeline Selection

Fig. 4 | Correlationbetween lowPDivandability todetect significantdifference
between anaesthesia and test–retest. Left: Cambridge anaesthesia dataset
(Spearman’s ρ =0.27, p = 4.4 × 10−14, two-sided). Right: western anaesthesia dataset
(Spearman’s ρ =0.34, p = 2.2 × 10−16, two-sided). The t-scores are obtained from
permutation-based two-sample t-tests comparing PDiv from test–retest NYU short,
against PDiv from awake vs anaesthesia. Horizontal red lines indicate t ± 1.96 from
two-sample t-test (two-sided), corresponding to a statistically significant difference

between the two groups’ mean, with negative t-scores corresponding to PDiv
(anaesthesia) > PDiv (test–retest). Each data-point represents one pipeline
(n = 768). Green dots indicate pipelines that produce the expected effect in both
datasets. Red triangles indicate pipelines that produce a misleading effect in both
datasets. PDiv Portrait Divergence. Shading indicates standard error of the fitted
line to model the linear relationship between the two respective variables. Source
data are provided as a Source Data file.
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Tool [Supplementary Data 2] under the columnCriterion edge failure).
Therefore, any pipeline which removes all edges in any one dataset is
excluded from further consideration as a suitable candidate. However,
note that pipelines that fail this check would also be eliminated from
consideration based on the other four criteria: only one of those that
failed the criterion of avoiding empty networks satisfied both the
within-between and propofol criteria (Lausanne129 + No GSR +
binarisation + Abs 0.3 +Mutual Info).

Overall recommendations for network construction pipelines
As a final step, we combined all the criteria identified above:
(I) Avoiding spurious differences: we operationalise this as having

low PDiv (pipelines with the average global rank in the top 20%, as
calculated from the average of independent rankings within each
dataset; 154 pipelines fulfilled this criterion);

(II) Detecting true experimental differences: ability to correctly
identify statistically greater PDiv in anaesthesia than test–retest,
across both propofol datasets (85 pipelines passed);

(III) Sensitivity to inter-individual differences: ability to detect smaller
within- than between-subjects PDiv in at least 50% of subjects, in
each of the four test–retest datasets (609 pipelines passed);

(IV) Avoiding motion confounds: no significant correlation between
PDiv and subject motion, in any of the four test–retest datasets
(566 passed);

(V) Non-empty networks: we rejected pipelines that produce empty
networks for any subject in any of the four test–retest datasets
(700 pipelines pass).

Out of the full set of 768 pipelines considered here, we found that
only 9 (~1%) jointly satisfied all of our criteria in each of the test–retest
datasets that we considered – meaning that the vast majority of
pipelines (759 out of 768) may be less than optimal (Fig. 6 and Sup-
plementary Data 1). However, 71 pipelines were excluded from the
optimal ones because they each failed one single criterion in one single
dataset, such that their failures were neither systematic nor pervasive.
In particular, the set of optimal pipelines would expand to 35 (~5% of
the total) if a less stringent criterion for the PDiv were adopted, such
that all pipelines in the upper 50%were admissible (while still having to
satisfy all other criteria in each of the relevant datasets).

When considering the distribution of individual pipeline steps
among the 9 optimal ones, three clear patterns emerge: all pipelines
use weighted (rather than binary) edges, and all quantify connectivity

Fig. 5 | PDiv within versus between individuals. Pipeline PDiv (portrait diver-
gence) in a given dataset is plotted against the proportion of participants in the
same dataset for whom the within-subject PDiv (baseline vs follow up) is smaller
than between-subject PDiv. Each data-point represents one pipeline (n = 768).
Pipelines above the red line meet the within-between criterion such that portrait

divergence is smaller for within-subject test–retest compared to between subject
comparisons. Shading indicates standard error of the fitted line tomodel the linear
relationship between the two respective variables. Spearman correlation coeffi-
cient (two-sided) is used to assess the strength of relationship and its statistical
significance. Source data are provided as a Source Data file.
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in terms of Pearson correlation (rather than mutual information)
(Fig. 7). Moreover, the preferred filtering method among the optimal
pipelines is the OMST, a method to optimise the balance between
network efficiency andwiring cost in a data-drivenmanner (selected in
5/9 cases). In other words, the single combination of Pearson corre-
lation, weighted edges and OMST accounts for 5 out of 9 optimal
pipelines, despite being only one out of 2 × 8 × 2 = 32 equally likely
combinations of edge quantification, thresholding and binarisation.
This is highly unlikely to occur just by chance: p = 4 × 10−5 for the
probability of randomly choosing 9 pipelines out of 768 and having 5
ormore of thembelong to the same group (out of 32 possible groups),
assessed with permutation testing. In contrast to the clear importance
of edge definition, parcellation choice seems to have less bearing on a
pipeline’s performance, but we do observe greater prevalence of
pipelines using GSR than not (7 out of 9 optimal ones, and 22/35 near-
optimal). We also find that while edges based on Pearson correlation
still dominate under the less stringent criterion (28/35), there is now
also a number of well-performing pipelines using proportional
thresholds (either fixed or SDM) with binarised edges (18/35). Node
type and number remain less clearly decisive: among the 35 near-
optimal pipelines, every single combination of parcellation type and
size is present at least once.

Overall, inspecting the whole list of optimal pipelines (Supple-
mentary Data 1) clearly reveals that considering each pipeline step in
isolation from the others does not provide the full picture. Specifically,
we found that a few combinations of options account for most of the
optimal pipelines (Fig. 8), with 5 out of 9 pipelines which meet all
inclusion criteria using the combination of weighted edges, Pearson
correlation and OMST filtering for edge definition and thresholding.
These results suggest that a pipeline’s performance is not solely
attributable to any specific step: rather, some combinations of steps
seem to be especially favourable.

Fig. 6 | Evaluating pipelines across all criteria. Each data-point represents one
pipeline (n = 768), with colour and shape reflecting which criteria aremet. Criterion
(I): Avoiding spurious differences (“PDiv ranking”). We consider pipelines as opti-
mal if they are in the top 20% in terms of the global rank based on PDiv (Portrait
Divergence) calculated as the average rank achieved in each dataset. We further
showpipelineswhich fulfil all other criteria while being among the top 50% in terms
of the average global rank. The maximum average PDiv among the top 50% pipe-
lines is 0.169. Criterion (II): Detecting true experimental differences (“propofol”).
Suitable pipelines should detect a significant effect for propofol, in the right
direction, in both propofol datasets, i.e. a pipeline is excluded if it fails to detect the
expected effect in either of the two propofol datasets. The Y axis reports the
maximum between the two t-statistics obtained for the two propofol datasets, so
pipelines satisfy the sensitivity criterion if they score< 1.96 on this axis (i.e., find a
significant effect for propofol, in the right direction, in both propofol datasets).
Criterion (III): Detecting inter-individual differences (“within-between”). A pipeline
fails this criterion if the resulting networks are more similar between than within
subjects more than 50% of the times, for any of the four test–retest datasets.
Criterion (IV): avoiding motion-induced differences (“motion”). A pipeline fails this
criterion if its PDiv has a significant correlation with differences in head motion in
any of the four test–retest datasets. Criterion (V): non-empty networks. As a final
check,we also exclude anypipelines that remove all connections fromanetwork, in
any of the four test–retest datasets. “Fail both” refers to pipelines failing in terms of
motion and within-between criteria, while “Pass both” refers to pipelines which
satisfy both of these criteria. Points circled in purple represent pipelines that
produced empty networks. Overall, 9 pipelines satisfy all criteria in all datasets; this
number grows to 35 if amore liberal PDiv criterion is adopted (top50%global rank).
Source data are provided as a Source Data file.

Fig. 7 | Prevalence of specific network construction steps among the 8 optimal
pipelines. Pie charts demonstrate, for each network construction step, the pro-
portion and absolute number of each option that is found among the optimal
pipelines. FDfixeddensity, GSRglobal signal regression,OMSTorthogonalminimal
spanning tree, SDM structural density. See Fig. S31 for a version of this figurewith a
breakdown of the pipelines under the more liberal PDiv criterion. Illustration of
parcellations adapted from refs. 34 and 44.
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Evaluating the full range of pipeline performance
Although we defined pass-fail criteria to be able to provide clear
recommendations for the reader, it is important to appreciate that the
performance of each pipeline is in fact continuous for all our evalua-
tion metrics (except the presence of empty networks). Therefore, in
addition to the optimal-nonoptimal distinction presented above, we
can also evaluate the full performance of each pipeline, across all
datasets and criteria. This approach allows us to identify patterns of
similarity between pipelines, and their main drivers (Fig. 9).

In particular, hierarchical clustering reveals that the main dis-
tinction between pipelines, in terms of ranked performance across all
datasets and criteria, is between pipelines producing binary versus
weighted networks. We confirmed this statistically: the mean rank of
weighted pipelines is 330.59 (SD = 73.76), whereas the mean rank for
binary pipelines is 400.48 (SD = 59.33), t(698) = 13.81, p <0.001,
Hedge’s g = 1.04, from independent-samples t-test (Fig. S38). Among
the other network construction steps, we also found significant dif-
ferences for edge type (with Pearson correlation outperforming
mutual information) (Fig. S39),filtering choice (withOMST and FD20%
performing best, on average; Fig. S40), and number of nodes (with a
small preference for more fine-grained parcellations; Fig. S41) In con-
trast, no significant difference inpipelines’overall rankwere found as a
result of GSR use, or whether nodes are defined from an anatomical
atlas, functional atlas, multimodal atlas, or Independent Components
Analysis (Fig. S42-S43).

These results indicate that network construction steps vary in
terms of their overall impact on pipeline performance, and are in line
with our observation that optimal pipelines tend to share specific steps
pertaining to edge type, filtering and binarization. However, not every
combination of the individually best-performing steps is optimal, and

therefore it is not sufficient to consider individual steps in isolation:
only end-to-end evaluation of full pipelines provides the full picture.

Discussion
A tremendous amount of neuroimaging research with functional MRI
is devoted to finding reliable functional connectomic biomarkers for
brain function and its disorders – but this process involves a combi-
natorial explosion of arbitrary choices21,22,27.

Here, we tackled this challengeby systematically investigating 768
unique pipelines that a neuroscientist could adopt to obtain brain
networks fromresting-state fMRI data, arising fromthe combinationof
several key data-processing steps. To do so, we departed from most
previous studies in a number of key respects. First, we explicitly
addressed the combinatorial explosion, by considering pipelines end-
to-end, rather than restricting our attention to specific steps. Second,
rather than choosing any arbitrary local or global graph-theoretical
property for our comparisons, we focused on the pipelines’ ability to
recover the networks’ overall topology across all scales. Third, we did
not focus exclusively on test–retest reliability, but rather we adopted
an entire battery of criteria that any appropriate pipeline for functional
connectomics should meet, in order to provide practically useful
results: these include minimising both random (noise-induced) and
systematic (motion-induced) topological distortions, while also being
sensitive to differences between individuals and between experi-
mental conditions. Finally, we required all criteria to be consistently
met in each of several independent datasets, encompassing short
(minutes),medium (weeks) and long timespans (up to 16months), and
using different spatial and temporal resolution, and different pre-
processing/denoising approaches, to ensure the generalisability of our
recommendations. Through this multi-dataset, multi-criteria, multi-
scale and multi-step approach, our goal was to provide a compre-
hensive set of benchmarks for trustworthy functional connectomics.

Our first finding is that inappropriate network pipelines are ubi-
quitous and can produce systematically misleading results. The sub-
stantial majority of the pipelines that we considered failed to meet at
least one of our criteria for consistent functional connectomics. We
also observed drastic and systematic variability among pipelines’
performance: an inappropriate choice of pipeline can greatly impair
one’s ability to recover a reliable network topology. Even for scans
obtained less than 45minutes apart, we observed up to a 5-fold
increase in topological dissimilarity (PDiv) compared with the best-
performing pipelines (Fig. 2), even across several months. Put differ-
ently, adoption of an inappropriate pipeline can distort the functional
connectomemore drastically than the passage of nearly a year –which
may have far-reaching repercussions for longitudinal studies of brain
network properties.

A recent review of statistical power in network neuroscience
suggested that “many real effects may bemissed by current studies”68.
Our results are in line with this observation: we found that the vast
majority (approximately 90%) of pipelines considered were unable to
reliably detect the effect of general anaesthesia on the functional
connectome. Thus, one potential implication of our work is that some
true effects may have been missed due to a suboptimal choice of
network construction pipelines for functional connectomics.

Even more worryingly, choice of the wrong pipeline can lead to
results that are not only misleading (statistically significant in the
opposite direction as the true effect), but replicably so (being
observed in two independent propofol datasets): we found this to be
the case for 38 pipelines. This means that adopting an inappropriate
pipeline for network analysis can turn the replicability of results
against researchers, boosting their confidence in results that are
actively the opposite of the truth. Being consistentlywrong rather than
randomly so, these results would not be “washed out” by approaches
such as meta-analytic aggregation: on the contrary, they would pro-
pagate to the meta-analysis itself. Clearly, such a scenario would have

5/9

Fig. 8 | Optimal edge processing combinations. Pie chart displays the frequency
of each combination of edge typedefinition, filtering, andbinarisation among the 9
pipelines which fulfil all criteria for a suitable network construction pipeline. See
Fig. S32 for a version of this figure with a breakdown of the pipelines under the
more liberal global rank criterion, and Figs. S33–35 for a breakdown of the rela-
tionship between PDiv and commonly studied graph properties, in terms of edge
quantification, binarisation, and filtering method. FD5%, fixed-density threshold at
5% density; FD10%, fixed-density threshold at 10% density. OMST Orthogonal
Minimal Spanning Trees, SDM structural density matching, FD fixed-density.
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devastating consequences for the use of functional connectomics for
biomarker identification; in the worst-case scenario, a treatment that
actually makes the disease worse may be systematically mis-identified
as making it better.

Finally, our results show that the above-mentioned concerns
cannotbe easily dismissed, because suboptimalpipelines are not a rare
exception, but rather the rule: the vast majority of pipelines among
those considered (759 out of 768) failed to meet at least one of our
criteria (or 733 if the criterionof having lowPDiv on average is relaxed).
In other words, our results clearly demonstrate that even when com-
bining steps for network construction that are individually sensible, it
is overwhelmingly likely (over 98%, in our sample of pipelines) that the
resulting overall pipeline will not be appropriate for functional con-
nectomics – at least not optimal. Indeed, we find that no single step
uniquely determines a pipeline’s ability (or inability) to accurately
recover the network’s topology: pipelines differing by only one step
are largely overlapping in terms of their portrait divergence distribu-
tions (Figs. S7–S30). These observations highlight the importance of
focusing on entire pipelines as we do here, in contrast to most pub-
lished approaches that typically consider only one or two steps in
isolation. This approach enabled us to identify some pipelines (i.e.,
specific combinations of steps) that successfully pass all our criteria in
every single one of our datasets.

Fortunately, we were able to identify a number of pipelines (9 out
of 768) that consistently recover effects in the correct direction, and
that additionally satisfy all our other criteria for trustworthy functional
connectomics: low PDiv for test–retest scans, indicating that the
pipeline minimises spurious differences; greater PDiv across subjects
than within the same subject on average, indicating that the pipeline
reflects the ground-truth difference between networks; no empty
networks; and no correlation between PDiv andmotion.We emphasise
that each of these criteria had to be met in all our datasets, which
included both differences in time-span, and also differences in data
resolution and preprocessing/denoising.

Additionally, we found that pipelines’ performance on our criteria
is far from random, nor does it vary idiosyncratically with each dataset,
instead being highly correlated across different independent datasets
spanning short, medium and long timespans (with Spearman’s ρ ran-
ging between 0.73 and 0.97; Fig. 3). Ability to minimise test–retest
differences is also correlated with a pipeline’s ability to detect true
differences, when they do exist: both between different individuals
(Fig. 5), and within the same individual (induced by potent pharma-
cological intervention; Fig. 4). In other words, there are systematic
factors at play. Indeed, patterns of similarity clearly emerge among the

pipelines that satisfy all our criteria. Specifically, 5 out of 9 optimal
pipelines employ the same procedure for edge definition (out of 32
possible ones), consisting of Pearson correlation, weighted edges, and
the OMST method of optimising the balance between network effi-
ciency and wiring cost. This is a statistically unlikely occurrence, sug-
gesting that there may be something about this combination that
makes it especially appropriate. In fact, all 9 (or 28/35 under the less
stringent PDiv criterion) employ Pearson correlation for edge defini-
tion. More combinations for edge construction become available if
pipelines with PDiv rank in the top 50% are included, with fixed-density
thresholds at 5% and 20% density also performing well in combination
with weighted and binary edges, respectively.

The edge construction part of the pipeline therefore appears as
the most crucial choice: once it is fixed, both GSR and NoGSR options
are available among the optimal pipelines, and many combinations of
parcellation type and size. This observation is corroborated by our
assessment of pipelines’ overall ranked performance across all criteria
and datasets (Fig. 9): significant predictors of better pipeline rank
include edge type (Pearson correlation outperforming mutual infor-
mation), filtering scheme (OMST and FD20% being the best) and
especially the use of weighted networks instead of binary ones (Figs.
S38–S40). In contrast, pipelines’ overall performance does not sig-
nificantly differ as a function of use of GSR, or parcellation type, when
these steps are considered in isolation (Figs. S42–S43). In other words,
the relevance of these network construction steps for our criteria
becomes apparent when they are considered as part of a full pipeline.

It is especially reassuring that our results about pipeline perfor-
mance are shared across multiple independent datasets. Likewise, our
results generalise across different popular methods for functionalMRI
denoising (aCompCor and FIX-ICA). The Cambridge and NYU datasets
were acquiredwithparameters for spatial and temporal resolution that
are widely used in functional neuroimaging studies. Therefore, we
expect our results to generalise to other datasets with similar specifi-
cations, such as the publicly available and intensely studied Cam-
CAN69, Philadelphia Neurodevelopmental Cohort70, CENTER-TBI71,
Harvard Aging Brain Study72, Autism Brain Imaging Data Exchange
(ABIDE)73, and UCLA Neurophenomics74 datasets among others,
enabling the functional connectomics community tomake themost of
these valuable resources to study development, aging, and disease.
Importantly though, our results about pipeline performance and
choice of optimal pipelines also replicated in the high-quality HCP
data, which have higher temporal and spatial resolution (suitable for
surface-based analysis). Therefore, we expect that our recommenda-
tions should also be applicable to more recent datasets acquired with

Fig. 9 | Clustering pipelines based onperformance across criteria and datasets.
Left: hierarchical clustering of pipelines, in terms of similarity (correlation) of their
performance across datasets and criteria. The clustering solution highlights the
difference between pipelines producing binary versus weighted networks. For the
PDiv criterion, best performance refers to the smallest PDiv; for the propofol cri-
terion, best performance is the greatest t-score in the correct direction; for the
within-between criterion, best performance means the greatest proportion of

participants for whom the within-subjects PDiv is smaller than between-subjects
PDiv; for the motion correlation criterion, best performance is identified as the
smallestmagnitudeof correlationwithmotion. Theempty networks criterion is not
included, since it is not continuous. Overall rank is the mean across all columns.
Right: correlation betweeneachpair of pipelines in termsofperformance, arranged
by the same hierarchical clustering. See Fig. S37 for the same figure, but sorted by
overall rank.
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HCP-like specifications, such as UK Biobank75. However, our recom-
mendations are intended to complement investigators’ domain-
expertise, not replace it: each study has its owndriving hypotheses and
unique challenges. For this reason, we have made available our inter-
active Pipeline Selection Tool (Supplementary Data 2), which provides
a full breakdown of each pipeline’s performance across each criterion
and each dataset, totalling 13,824 unique assessments: to enable
readers to engage with our results, and identify pipelines that fit their
specific requirements.

Our optimal pipelines are those that pass all our tests across all
datasets: they minimise noise-driven differences, but correctly detect
genuine ones, in a way that is consistent across datasets. While this
stringency undoubtedly contributed to the exclusion of many pipe-
lines – 71 of which only due to a single failure in a single dataset – it
should equally bolster our confidence about the recommended pipe-
lines’ suitability to provide sensible results, including across different
time-spans and different data acquisition and preprocessing choices.
By recommending a select number of network construction pipelines
that provide the most replicable and generalisable results, we hope
that the present work will facilitate future meta-analyses of functional
connectomics studies.

We next discuss consistent features among optimal network
construction pipelines. Owing to its ease of application and inter-
pretation, Pearson correlation is a cornerstone of functional con-
nectomics, and remains the most widely used method to quantify
connectivity between regions across thousands of published studies
(accounting for over 75% of the studies reviewed by ref. 21). It is
therefore reassuring for the field that our optimal pipelines over-
whelmingly favour Pearson correlation to quantify functional con-
nectivity. Consistent with our results, correlation was also shown in
previous work to outperform mutual information and partial correla-
tion in terms of test–retest reliability, but also in terms of finger-
printing accuracy76.

At the microscopic level of neurons and circuits, the brain is
unquestionably a nonlinear system. However, the good performance
of Pearson correlation that we observed in our results dovetails with
previous evidence by Hlinka and colleagues, whose extensive model-
ling led them to conclude that “the practical relevance of nonlinear
methods trying to improve over linear correlationmight be limited by
the fact that the data are indeed almost Gaussian”77. More broadly,
although nonlinear aspects of fMRI timeseries can be identified, cap-
turing variability related to patient-control differences78,79, multiple
studies have provided quantifiable evidence that at the macroscale
level observed by functional MRI, signals may be suitably accounted
for as linear80,81. This has been shown in terms of obtaining limited or
no additional benefit when usingmore complex nonlinear methods to
relate structural and functional connectivity82,83, or to predict demo-
graphic variables from functionalMRI84, or when comparing the ability
of linear versus nonlinear models to fit high-resolution BOLD
timeseries85.

Crucially, the observed predominance of linear dynamics in
macroscale brain signals cannot be dismissed as a mere artifact of
functional MRI85. Although fMRI’s low temporal resolution does con-
tribute to linearising the signal due to both temporal averaging and the
limited number of samples, linearmodels were also recently shown by
Nozari and colleagues (2023) to outperformnonlinear ones in terms of
their ability to fit intracranial EEG (iEEG) time-series85, which are elec-
trodynamic rather than haemodynamic in origin, and have much
higher temporal resolution. Thus, empirical results from diverse neu-
roimagingmodalities convergewith both simulations85 and theoretical
analysis86, showing that the dynamics of nonlinear stochastic popula-
tions converge to linear dynamics at the macroscale, as a result of
spatial averaging. In other words, observing good performance of
linear methods at the macroscale should not be viewed as un-physio-
logical, or a mere artifact of a specific imaging modality, or a denial of

the brain’s microscale nonlinearity. Rather, linearisation is an inherent
consequence of observing brain activity at the macroscale as afforded
by modern neuroimaging, and this phenomenon contributes to
explaining why Pearson correlation is suitable for quantifying func-
tional connectivity – at least according to the criteria that we adopted.
Nonetheless, we note that although none of the 9 optimal pipelines
employMI, 7 out of the 35 near-optimal ones do. In particular, someof
the near-optimal pipelines include versions of the same pipeline that
only differ in the use of Pearson correlation or MI: ICA-300 GSR-
Top20%-binary, ICA-200 NoGSR-Top20%-binary, Lausanne-463
NoGSR-Top20%-binary, Lausanne-463 GSR-Top20%-binary.

Pertaining to edge filtering, the OMST (Orthogonal Minimum
Spanning Trees algorithm), our main recommended approach, is a
data-drivenmethod that optimises the balance between efficiency and
wiring cost of the network. OMST is unique among the filtering
schemes considered here, for multiple reasons. First, because it guar-
antees that the resulting network is not fragmented into disconnected
components (Fig. S35), which we know should not be the case in the
brain. This feature makes OMST analogous to percolation-based fil-
tering schemes, whereby the weakest edges are iteratively removed
from the network, up to the point where further removal would make
the network disconnected, which corresponds to the percolation
threshold87–89. Thus, OMST and percolation thresholding both ensure
that global connectivity is not impacted by removal of a few weak but
topologically important edges. Unlike percolation, however, OMST is
not restricted to preserving only the strongest edges. Rather, weaker
edges can be preferred to stronger ones and be included in the OMST-
filtered network, if they contribute to an optimal balance of efficiency
and cost. Because of this ability to include weaker edges over stronger
ones based on their role in the overall topology, OMST avoids a pitfall
of percolation thresholding, whereby the presence of a single node
whose edges are all relatively weak, can result in a network that is
potentially very dense (because the percolation threshold is deter-
mined by the weakest edge whose removal would make the network
disconnected, and if this edge is very weak, many other edges may
survive the threshold).

In other words, the second feature that makes OMST unique
among the filtering schemes considered here is that OMST takes into
account not only the strength of connections, but also their more
general topological role in the network. Therefore, connectomes
obtained through OMST can include edges that both absolute and
proportional thresholding methods would simply disregard as too
weak, regardless of any further role they may play in network organi-
sation. The key role of weak connections acting as shortcuts between
segregated modules, often referred to as the “strength of weak
ties”89–91, has been increasingly recognised across artificial and biolo-
gical networks, including the human brain – a clear argument in favour
of OMST’s ability to reconstruct biologically plausible networks,
especially in combination with weighted (rather than binary) edges,
which is consistent with our optimal pipelines.

It is essential to note that despite the similar name, OMST is very
different both in theory and in practice from simple Minimum Span-
ning Tree (MST) filtering. Reducing the network to its minimum
spanning tree will enforce every individual’s network to have the same
number of edges: namely, the minimum number possible. In other
words, with Minimum Spanning Tree filtering the density of the
reconstructed network is known a priori, given its number of nodes.
This is not the case for OMST, which is a data-driven method. Speci-
fically, while the OMST does ensure the desirable property of not
leaving any nodedisconnected from the rest of thebrain, it determines
the final number of edges in a data-driven manner by optimising the
network’s balance of efficiency and wiring cost. This approach there-
fore produces plausibly sparse networks, but not maximally sparse,
and without imposing the same a-priori level across all individuals
(arguably a biologically implausible feature of fixed-density methods).
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This difference has important practical consequences for the physio-
logical plausibility of the reconstructed networks: simple Minimum
Spanning Tree filtering would lead to brain networks with the biolo-
gically implausible property of a null clustering coefficient64, whereas
this is not the case for the OMST method that we use (as clearly
demonstrated in Fig. S34). We further illustrate this distinction in Fig.
S36, which shows that for all datasets and individuals, pipelines using
OMSTfilteringproduceplausible values ofmean clustering coefficient.
In contrast, as expected the Minimum Spanning Tree filtering always
results in amean clustering coefficient of zero, regardless of any other
steps in the network construction pipeline. This clearly illustrates that
despite similar names, OMST (which we used) and the Minimum
Spanning Tree filtering (which we did not use) lead to very different
results and must not be confused.

The good performance of OMST is arguably due to this method
being data-driven based on each individual connectome, rather than a
one-size-fits-all. Indeed, although OMST is a relatively recent method,
its use has already been recommended by several studies on multiple
grounds. OMST filtering was shown to minimise topological differ-
ences between pipelines62; it has outperformed alternative threshold-
ing schemes for functional networks in terms of recognition accuracy
and reliability37,63,92; and it has also been recommended for use with
alternative neuroimaging modalities such as electro- and magneto-
encephalography37,63,92, suggesting that its applicabilitymay generalise
beyond rs-fMRI. Finally, the use of OMST (as well as 20% fixed-density
thresholding) was also recommended by another recent study44 that
evaluated a large number of individual options (though without
combining them, and using as criterion the ICC of specific network
properties instead of our topological approach). Therefore, our results
suggest a convergence of recommendations for brain network con-
struction across different criteria and different studies – possibly
heralding the emergence of consistent analytic practices in the field.
This convergence may in part be helped by our choice to use the
Portrait divergence (PDiv), which enabled us to take into account both
local and global aspects of network organisation across scales53: by
considering the network’s topology as a whole, our results are inher-
entlymore general than results basedon any specific graph-theoretical
metric.

In this study, we endeavoured to systematically sample and
combine many of the most common options across each step in the
process of constructing a functional brain network from rs-fMRI data –
resulting in 768 unique pipelines. However, due to combinatorial
explosion, it would be unfeasible to consider every single option that
has been proposed in the literature, and this inevitable limitation
should be borne in mind when interpreting our results.

Pertaining to node definition, we considered both atlas-based
parcellations, and Independent Components Analysis. Atlas-based
methods are the most widely used approach for defining nodes in
functional connectomics21,33, with their prevalence enjoying an expo-
nential growth in recent years33. This enduring popularity is due to
multiple reasons. First, biological interpretability and dimensionality
reduction. Additionally, parcellations enable integration between data
from neuroimaging modalities whose different acquisition methods
and resolution are intrinsically different93, such as fMRI and PET94,
cortical morphometry95 or post-mortem transcriptomics96. In the
words of Revell and colleagues: “The atlases defining anatomical
structures (whether they are functionally, histologically, genetically,
procedurally, multi-modally, or randomly defined) are the link
between structural connectivity and functional connectivity mea-
surements of the brain”33. Reflecting the key role of parcellations in
today’s human neuroscience, there have been recent calls to adopt a
“standard set of atlases”33 – which includes all the atlases considered
here. Indeed, some open neuroimaging resources provide data only in
the form of specific parcellations: often precisely those that we eval-
uated here97–99. Therefore, an evaluation of the role of such popular

parcellations in the network reconstruction process is especially
pressing for informing best practices in the field.

We considered some of the most widely used atlas-based parcel-
lation schemes for defining nodes in the brain, which vary along some
of the most relevant dimensions for network construction24,30. Our
parcellations range from traditional anatomical atlases based on
structural landmarks from one (AAL) or multiple individuals (Lau-
sanne/Desikan-Killiany), to functional parcellations combining task-
based and resting-state fMRI in over 1400 individuals (Schaefer), to
multimodal parcellations accounting for cortical myeloarchitecture,
functional activation, connectivity and topography (Glasser, Brainne-
tome). However, despite the diversity of approaches covered,
encompassing the most common range of network sizes used in the
field, we inevitably could not include all the possible atlases in
existence24,30,31,33,100–104, and we chose to focus on some of the most
widely adopted. In fact, the parcellations that we considered are all
among those that an exhaustive multi-criterion evaluation of 55 dif-
ferent brain atlases, recently recommended as the “standard set of
atlases” for inclusion in neuroimaging studies, due to their prevalence
and coverage of the space of parcellation types and sizes33.

Dividing the brain into discrete, spatially circumscribed regions
provides both dimensionality reduction and ease of interpretation.
However, atlas-based parcellations also come with implicit assump-
tions about spatial localisation (e.g., by imposing the constraints that
parcels should be spatially contiguous and non-overlapping) and
about what should be regarded as the true functional units of the
brain31. An alternative to atlas-basedmethods for node definition is the
use of Independent Components Analysis (or analogous approaches
such as functional modes105), which can provide spatially overlapping,
“soft” parcels without hard boundaries, possibly exhibiting multiple
spatially discontiguous peaks, which may be better able to reflect the
complexity of brain organisation106–110. Simulations previously sug-
gested that defining nodes based on ICA may outperform the use of
regions-of-interest (e.g., atlas-based parcellations)108, and ICA also
performed well at behavioural prediction11.

Here, therefore, we also included nodes defined as continuous,
spatially overlapping independent components from ICAperformedat
different dimensionalities. However, we did not find significant dif-
ferences acrossparcellation types in termsof overall performance (Fig.
S42). Indeed, each type of node definition (anatomical atlas, functional
atlas, multimodal atlas and ICA-based) features among the optimal
pipelines – suggesting that parcellation type may be of limited rele-
vance on its own (at least among the 768 pipelines that we evaluates),
and what matters is more the combination of specific node definition
choices as part of specific pipelines.

Although we endeavoured to provide a representative sampling
of widely used node definition schemes (including all those in the
“standard set of atlases” recently proposed33), many additional atlases
exist in the literature, as well as parcellation-free methods24,30. The
combinatorial explosion prevented us from extending our investiga-
tion to alternatives, but we briefly outline them below. Voxelwise/
vertexwise networks with thousands of nodes43,111 provide maximal
spatial resolution, but “volumetric pixels” have no more intrinsic bio-
logical meaning than the pixels of a 2D image – and the computational
burden can be considerable. Additionally, by failing to aggregate bio-
logically meaningful units (since cognitive functions are known to
cover cortical areas larger than single voxels27), this approach can incur
a loss of both physiological interpretability and statistical power, due
to lower signal-to-noise ratio and higher rate of multiple comparisons.
Recent gradient-based and eigenmode-based approaches provide
alternative representations of the brain that are spatially extended,
overlapping, and continuous rather thandiscrete (analogously to ICA),
offering a complementary perspective on the constituent elements of
the brain’s functional organisation32,112–116. It is also worth mentioning
that, whatever themacroscopic units of brain functionmaybe in terms
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of space, they need not be temporally invariant: future extensions of
the present workmay consider node definition schemes that allow for
node boundaries to vary, and nodes themselves to merge or split
dynamically in time, or as a function of task27,117–120. Finally, future
approaches may enrich nodes with biological annotations such as
microstructure, chemoarchitecture, and heterogeneities reflecting
additional biological properties93–95,121,122, thereby providing a path
towards a more integrative neuroscience.

Overall, there are a myriad ways to define nodes for functional
connectomics, both using parcellations of different types and sizes,
and using parcellation-freemethods entirely. Selection criteria specific
for this choice have also been proposed in the literature33. Future work
may reveal whether some of these alternative approaches to node
definition perform consistently better – or consistently worse – across
our own criteria, than the parcellation-based node definitions adopted
in the present work. However, we reiterate that our results point
towards amoreprominent role of edgedefinition thannodedefinition,
for determining the success of a pipeline – at least among the 768
pipelines considered here. Joining previous authors, we caution the
reader that there may simply not be a “one size fits all” atlas33,119: our
results suggest that the remaining steps in the pipeline provide
essential context for determining whether a given atlas is sui-
table or not.

Pertaining to edge definition, future work may adopt more
sophisticated methods of quantifying connectivity123: for instance, by
adopting multivariate connectivity estimators124 or methods from
information decomposition capable of recovering different kinds of
information sharing between regions125–128 or the directionality of
connections (transfer entropy, Granger causality, Dynamic Causal
Modelling123,129,130), or disambiguating between direct and indirect
connections (e.g. partial correlation, regularised partial
correlation11,107). In particular, recent studies have suggested that
although partial correlation tends to exhibit lower reliability than the
commonly used Pearson correlation76,131, this shortcoming may be
compensated by higher validity76 and discriminability132.

More broadly, many alternative thresholding methods also exist,
whether based on statistical significance133, percolation87–89, or
shrinkage methods107,134 – or avoiding thresholding entirely, by using
analytic methods that can deal with fully connected and signed
networks52. Additionally, it remains to be determined how our results
will generalise to the case of frequency-specific or even multilayer
networks obtained from EEG or MEG135 (although see Jiang et al.44 and
Dimitriadis et al.136,137 for recent investigations of frequency bands for
fMRI network construction); and time-varying (“dynamic”) networks,
an increasingly popular approach in fMRI functional connectivity,
whereby edges change over time138–141.

It is also known that different motion correction strategies can
influence the validity of BOLD signals and subsequent network char-
acteristics; however, no correction strategy offered perfect motion
correction26. Here, we adopted a widely used denoising strategy
(anatomical CompCor), and required our results to also replicate in a
dataset denoised with FIX-ICA instead, which unlike aCompCor is
designed to affect artifacts specifically and avoidmodifying the neural
signal of interest59,60. Additionally, we also considered two versions of
each dataset, preprocessed with versus without the additional step of
global signal regression, due to ongoing controversy about the effect
of GSR on functional connectivity61,142. Finally, to further mitigate the
potential impact of motion on our recommendations, we also expli-
citly included as one of our criteria that pipelines should not produce a
PDivdistribution that is significantly correlatedwith the distribution of
differences in subject motion, across any of the four test–retest
datasets.

Notably, our final recommendations include pipelines both with
and without GSR – although the latter is somewhat more prevalent
among the very best-performing ones. In particular, we even found

that the set of optimal pipelines includes versions of the same pipeline
both with and without GSR: Brainnetome-246 for Pearson-OMST-
weighted (with GSR and no-GSR versions both featuring among the 9
optimal pipelines); and in the expanded set, Schaefer454 Top20%-
binary-Pearson, Lausanne-463 Top20%-binary-Pearson, Lausanne-463
Top20%-binary-MutualInfo, ICA-300 Top20%-binary-Pearson and ICA-
200 Top20%-binary-MutualInfo. Therefore, our results suggest that
investigators may have some discretion in the choice of using GSR,
depending on their specific datasets and hypotheses. As an example,
GSR may remove physiological and motion-induced noise56,58, and it
may strengthen brain-behaviour associations142, but it can also remove
signal of interest pertaining to somepharmacological andpathological
conditions39,143, or distort group46 and individual differences144. Like-
wise, a recent study observed reduced generalisability of graph-
theoretical properties across sites, sessions, and paradigms when GSR
was used42, although Tozzi et al.48 delineated a more intricate picture,
whereby GSR decreases reliability for networks and most edges, but
increases it for some others, and GSR appeared overall beneficial in a
recent evaluation of multiple denoising strategies for fMRI145. A com-
prehensive evaluation of the relative advantages and drawbacks of
GSR is beyond the scope of this paper, and the reader is referred to Fox
&Murphy61 andLiu et al.142 for extensivediscussions. Finally,wedidnot
explore potential differences between resting-state conditions (eyes-
open vs eyes-closed vs naturalistic viewing)49,146, or the impact of scan
duration and spontaneous fluctuations in arousal state – although we
did include datasets with different scan duration, up to 1200
volumes21,147.

There are also additional considerations for functional con-
nectomics that deserve to be mentioned. In addition to increasing the
number of options and pipelines considered, future work may further
expand on the present results in several ways: it remains to be deter-
mined to what extent our results apply to task-based rather than
resting-state fMRI148,149. The generalisability of the proposed frame-
work beyond healthy individuals is also worthy of future exploration.
Compared to healthy controls, some clinical populations have
demonstrated lower test–retest reliability150,151. Reliability across the
lifespan should be also considered by comparing age groups, as early
evidence untangled age-related differences in test–retest reliability of
rs-fMRI152. The choice of the optimal pipeline for functional con-
nectomics may, therefore, vary by clinical characteristics, which still
remains to be ascertained and may benefit from topology-based
approaches such as the one adopted here. This is an important next
step following the present work. It is also possible that a different
proportion of optimal pipelines would be found when alternative
reconstruction methods are included, or different neuroimaging
modalities. Additionally, although here we considered numerous cri-
teria for trustworthy functional connectomics, other criteria could also
be of relevance for specific research questions, such as fingerprinting
accuracy76, discriminating cognitive states132, or structure-function
correspondence33,99,153, among others.

The time-spans that we considered here range from less than an
hour to nearly a year between scans. Certainly, in addition to mea-
surement noise, some degree of change in the topology of the func-
tional connectome over the course of weeks or months is to be
expected, due to learning and plasticity which may even change the
underlying structural connectome. However, such physiological phe-
nomena cannot be expected to appreciably reorganise the entire
functional connectome within the span of less than an hour (in the
absence of experimental interventions). Therefore, any test–retest
PDiv observed within the same hour is most plausibly attributable to
noise, and an appropriate pipeline should simply minimise it, as per
our test–retest criterion. Additionally, plasticity and learning should
not make the functional connectome so different that it becomes
indistinguishable from the connectomes of other individuals: rather,
such an occurrence should beminimised, as it indicates measurement
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noise. Our results clearly show a convergence of these criteria: pipe-
lines thatproduce small test–retest PDiv overweeks ormonths are also
those that minimise within-hour PDiv, and that minimise the mis-
identification of individuals. Thus, across datasets and time-spans we
observed an encouraging convergence of criteria for reliable func-
tional connectomics.

At a broader level, our approach has been to identify which
pipelines produce sensible functional connectomes, so that research-
ers may have a guide to orient their choice among the “forking paths”
of analytical possibilities. However, alternative approaches exist. For
instance, pipelines can be evaluated in terms of classification and
prediction of behavioural and demographic variables and individual
differences from functional connectomics11,154; atlas-specific criteria
have also been proposed by Revell and colleagues33. Alternatively,
researchersmay perform a “multiverse” analysis, adopting not one but
many pipelines and then finding suitable ways to aggregate the results
– or using machine learning tools to characterise a low-dimensional
space of pipelines155. These approaches are notmutually exclusive, but
rather complementary: our criteria and our final recommendations
could be used to prune the number of branching options to a man-
ageable number of optimal pipelines, and a multiverse analysis could
then be carried out in parallel across them, with the confidence that
the overall picture will not be contaminated by inappropriate choices.

Ultimately, brain function is extremely complex. Studying the
brain as an organised network, rather than a mere collection of areas,
has been a tremendous step forward in neuroscientists’ ability to tame
this complexity6. In fact, it has been argued that there is no a priori
reason to assume that the space of brain function should coincidewith
the space of brain anatomy28. Perhaps if a network representation of
brain function is desired, the best waywill turn out to be onewhere the
nodes represent different temporal frequencies, or different spatial
frequencies/eigenmodes28,113–116,156, or even the recent “edge-centric”
functional connectivity, whereby the edges of the functional con-
nectome are themselves treated as nodes of an edge-to-edge
network157. However, even the most sophisticated way of represent-
ing the functional connectome, would still be a major simplification of
the true underlying complexity. Our purpose herewas not – and could
not be – to identify the one perfect combination of network con-
struction steps that reflects true brain function. Rather, among a large
set of ways to simplify the brain into a network, we sought to identify
which (if any) respect a set of criteria that we deem sensible and of
wide applicability across the field of functional connectomics. How-
ever, it is clear that sometimes additional complexity may be required
to address specific questions. In the words of Korhonen, Zanin and
Papo: “network neuroscientists should choose those elements that
yield the representation that best serves their specific goals”27.

Overall, among the pipelines that we considered, most fail to
meet our threshold for optimality (meeting all five criteria in each of
four datasets), and this should raise some measure of concern: an
unprincipled choice of pipeline is very likely to be suboptimal. This
pervasiveness of suboptimal pipelines makes it all the more urgent
to know which pipelines are optimal. Although each of our pipelines
represents a unique combination of network construction steps,
they all also share some features, such as the range of network sizes
considered, producing undirected and sparse networks, and being
based on resting-state fMRI (to name just a few). It is conceivable
that any of these shared features may be responsible for the non-
optimality of most pipelines considered here. However, the present
work cannot address whether alternative pipelines would perform
better or worse when using different steps than those considered
here (such as any of the many parcellation-free approaches in
existence, or directed measures of connectivity, or a number of
nodes outside our range, or a different imaging modality, and so
on). We welcome the ongoing development and evaluation of new
methods and pipelines.

However, the fact thatmostof thepipelines consideredhere fail at
least one of our criteria, does not mean that we should abandon
functional connectomics. The failure of some pipelines does not
negate the success of others. By considering pipelines end-to-end
rather than focusing on individual steps, we were able to identify a
small but consistent set of pipelines that successfully meet all our
criteria in all our datasets, and which are not random but rather share
some consistent features (especially pertaining to edge definition).
Therefore, our key message is that although an uninformed choice of
pipeline will likely be suboptimal, researchersmay still confidently use
popular methods for network reconstruction, so long as they rely on
an appropriate combination of steps.

In conclusion, our study provides a principled framework to
search for the best network construction pipelines across hundreds of
candidates, with the aim of recovering brain networks that satisfy
multiple criteria for scientific accuracy and practical utility. We
revealed drastic differences across pipelines in terms of their ability to
recover similar network topologies across different scans of the same
individual – even within the same hour – and to recover the true
directionality of experimental effects of interest: pipelines vary widely
in their ability to detect true effects while mitigating spurious ones.
The present demonstration of the existence and prevalence of sys-
tematically misleading pipelines further enhances the importance of
identifying suitable network construction pipelines. Thus, our results
indicate that researchers should pay careful consideration to their
choice of networkprocessing pipeline: sincemost pipelines fail at least
one criterion, an uninformed choice of pipeline will likely produce
suboptimal (and possibly misleading) results. Nevertheless, the pre-
sent work also identifies a number of optimal pipelines that may be
used with confidence, since they reliably satisfy all our criteria across
all our datasets.

Our findings further indicate that no single step in the network
construction workflow can single-handedly guarantee that all criteria
will be met. Fortunately, however, we also show that by carefully
combining different steps in the network construction workflow,
neuroscientists can obtain functional brain networks that satisfy all our
criteria, across datasets covering different time-spans and different
acquisition and preprocessing procedures, and may be used with
confidence. These recommendations can inform future studies, to
help investigators make principled choices and minimise the chance
that an inappropriate choice of network construction will lead to
unreliable or false negatives results. Overall, by enabling systematic
evaluation of network processing steps in a way that does not require
the arbitrary selection of specific network properties of interest, we
hope that the topology-based,multi-criteria frameworkproposed here
will lead towards an objective consensus and more consistent prac-
tices in functional connectomics.

Methods
NYU test–retest dataset
This is an open dataset from the International Neuroimaging Data-
Sharing Initiative (INDI) (http://www.nitrc.org/projects/nyu_trt), ori-
ginally described in Shehzad et al.158. Briefly, this dataset includes 25
participants (mean age 30.7 ± 8.8 years, 16 females) with no history of
psychiatric or neurological illness. The study was approved by the
institutional review boards of the New York University School of
Medicine and New York University, and participants provided written
informed consent and were compensated for their participation.

For each participant, 3 resting-state scans were acquired. Scans 2
and3were conducted in a single scan session, 45min apart, which took
place on average 11months (range 5–16months) after scan 1. Each scan
was acquired using a 3T Siemens (Allegra) scanner, and consisted of
197 contiguous EPI functional volumes (TR = 2000 ms; TE = 25ms; flip
angle = 90°; 39 axial slices; field of view (FOV) = 192 × 192 mm2; matrix
= 64 × 64; acquisition voxel size = 3 × 3 × 3mm3). Participants were
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instructed to relax and remain still with their eyes open during the
scan. For spatial normalisation and localisation, a high-resolution T1-
weighted magnetisation prepared gradient echo sequence was also
obtained (MPRAGE, TR = 2500ms; TE = 4.35ms; TI = 900ms; flip angle
= 8°; 176 slices, FOV = 256mm).

Cambridge test–retest dataset
Right-handed healthy participants (N = 22, age range, 19–57 years;
mean age, 35.0 years; SD 11.2; female-to-male ratio, 9/13) were recrui-
ted via advertisements in the Cambridge area and were paid for their
participation. Cambridgeshire 2 Research Ethics Committee approved
the study (LREC 08/H0308/246) and all volunteers gave written
informed consent before participating and were compensated for
their participation. Exclusion criteria included National Adult Reading
Test (NART) < 70, Mini Mental State Examination (MMSE) < 23, left-
handedness, history of drug/alcohol abuse, history of psychiatric or
neurological disorders, contraindications for MRI scanning, medica-
tion that may affect cognitive performance or prescribed for depres-
sion, and any physical handicap that could prevent the completion of
testing.

The study consisted of two visits (separated by 2–4 weeks). For
each visit, resting-state fMRI was acquired for 5:20minutes using a
Siemens Trio 3 T scanner (Erlangen, Germany). Functional imaging
data were acquired using an echo-planar imaging (EPI) sequence with
parameters TR 2000ms, TE 30ms, Flip Angle 78°, FOV 192 × 192mm2,
in-plane resolution 3.0 × 3.0mm, 32 slices 3.0mm thick with a gap of
0.75mm between slices. A 3D high-resolution MPRAGE structural
image was also acquired, with the following parameters: TR 2300ms,
TE 2.98ms, Flip Angle 9°, FOV 256× 256mm2. Task-based data were
also collected, and have been analysed before to investigate separate
experimental questions159,160. A final set of 18 participants had usable
data for both resting-state fMRI scans andwere included in the present
analysis.

Human Connectome Project test–retest data
This dataset is a subset of the 1200 HumanConnectome Project (HCP)
subjects65,66. It includes resting-state functional MRI (and accompany-
ing structural MRI) scans for 46 healthy individuals (13male, age 22–35
years), who were each scanned twice at 3 T, at intervals ranging
between 1 month and 11 months). All HCP scanning protocols were
approved by the local Institutional Review Board at Washington
University in St. Louis, and participants provided written informed
consent. Detailed information about the acquisition and imaging
is provided in the dedicated HCP publications. Briefly: anatomical
(T1-weighted) images were acquired in axial orientation, with FOV =
224 × 224mm, voxel size 0.7mm3 (isotropic), TR 2400ms, TE 2.14ms,
flip angle 8°. Functional MRI data (1200 volumes) were acquired with
EPI sequence, 2mm isotropic voxel size, TR 720ms, TE 33.1ms, flip
angle 52°, 72 slices.

Cambridge propofol dataset
The Cambridge University (“Cambridge”) propofol dataset has been
published before161–163; we refer the reader to the original study for a
detailed description161. As previously reported, 16 healthy volunteers
were initially recruited for scanning. In addition to the original 16
volunteers, data were acquired for nine participants using the same
procedures, bringing the total number of participants in this dataset to
25 (11 males, 14 females; mean age 34.7 years, SD = 9.0 years). Ethical
approval for these studies was obtained from the Cambridgeshire 2
Regional Ethics Committee, and all subjects gave informed consent to
participate in the study and were compensated for their participation.
Volunteers were informedof the risks of propofol administration, such
as loss of consciousness, respiratory and cardiovascular depression.
Theywere also informed aboutmoreminor effects of propofol such as
pain on injection, sedation and amnesia. In addition, standard

information about intravenous cannulation, blood sampling and MRI
scanning was provided.

Three target plasma levels of propofol were used: no drug
(Awake), 0.6mg/ml (Mild sedation) and 1.2mg/ml (Moderate seda-
tion). Scanning (rs-fMRI) was acquired at each stage, and also at
Recovery; anatomical images were also acquired. The level of sedation
was assessed verbally immediately before and after each of the scan-
ning runs. Propofol was administered intravenously as a “target con-
trolled infusion” (plasma concentration mode), using an Alaris PK
infusion pump (Carefusion, Basingstoke, UK). A period of 10min was
allowed for equilibration of plasma and effect-site propofol con-
centrations. Blood samples were drawn towards the end of each
titration period and before the plasma target was altered, to assess
plasma propofol levels. In total, 6 blood samples were drawn during
the study. The mean (SD) measured plasma propofol concentration
was 304.8 (141.1) ng/ml during mild sedation, 723.3 (320.5) ng/ml
during moderate sedation and 275.8 (75.42) ng/ml during recovery.
Mean (SD) total mass of propofol administered was 210.15 (33.17) mg,
equivalent to 3.0 (0.47)mg/kg. Two senior anaesthetists were present
during scanning sessions and observed the subjects throughout the
study from the MRI control room and on a video link that showed the
subject in the scanner. Electrocardiography and pulse oximetry were
performed continuously, and measurements of heart rate, non-
invasive blood pressure, and oxygen saturation were recorded at
regular intervals.

The acquisition procedures are described in detail in the original
study161. As previously reported, MRI data were acquired on a Siemens
Trio 3T scanner (WBIC, Cambridge). For each level of sedation, 150 rs-
fMRI volumes (5min scanning) were acquired. Each functional BOLD
volume consisted of 32 interleaved, descending, oblique axial slices,
3mm thick with interslice gap of 0.75mm and in-plane resolution of
3mm, field of view = 192 × 192mm, TR = 2000ms, acquisition time=
2000ms, time echo = 30ms, and flip angle 78. T1-weighted structural
images at 1mm isotropic resolution were also acquired in the sagittal
plane, using an MPRAGE sequence with TR = 2250ms, TI = 900ms,
TE = 2.99ms and flip angle = 9 degrees, for localisation purposes.
During scanning, volunteers were instructed to close their eyes and
think about nothing in particular throughout the acquisition of the
resting-state BOLD data. Of the 25 healthy subjects, 15 were ultimately
retained (7 males, 8 females): 10 were excluded, either because of
missing scans (n = 2), or due of excessive motion in the scanner (n = 8,
5mm maximum motion threshold). Here, we only use data from the
Awake and Moderate anaesthesia resting-state scanning.

Western propofol dataset
The Western University (“Western”) propofol data have been pub-
lished before17,164–166 and we refer the reader to the original study for a
detailed description. Briefly, data were collected between May and
November 2014 at the Robarts Research Institute, Western University,
London, Ontario (Canada). The study received ethical approval from
the Health Sciences Research Ethics Board and Psychology Research
Ethics Board of Western University (Ontario, Canada). Healthy volun-
teers (n = 19) were recruited (18–40 years; 13 males). Volunteers were
right-handed, native English speakers, and had no history of neurolo-
gical disorders. In accordance with relevant ethical guidelines, each
volunteer provided written informed consent, and received monetary
compensation for their time. Due to equipment malfunction or phy-
siological impediments to anaesthesia in the scanner, data from n = 3
participants (1male)wereexcluded fromanalyses, leaving a totaln = 16
for analysis17.

Resting-state fMRI data were acquired at different propofol levels:
no sedation (Awake), Deep anaesthesia (corresponding to Ramsay
score of 5) and also during post-anaesthetic recovery. As previously
reported17, for each condition fMRI acquisition began after two
anaesthesiologists and one anaesthesia nurse independently assessed
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Ramsay level in the scanning room. The anaesthesiologists and the
anaesthesia nurse could not be blinded to experimental condition,
since part of their role involved determining the participants’ level of
anaesthesia. Note that the Ramsay score is designed for critical care
patients, and therefore participants did not receive a score during the
Awake condition before propofol administration: rather, they were
required to be fully awake, alert and communicating appropriately. To
provide a further, independent evaluation of participants’ level of
responsiveness, they were asked to perform two tasks: a test of verbal
memory recall, and a computer-based auditory target-detection task.
Wakefulness was also monitored using an infrared camera placed
inside the scanner.

Propofol was administered intravenously using an AS50 auto
syringe infusion pump (Baxter Healthcare, Singapore); an effect-site/
plasma steering algorithm combined with the computer-controlled
infusion pump was used to achieve step-wise sedation increments,
followed by manual adjustments as required to reach the desired tar-
get concentrations of propofol according to the TIVA Trainer (Eur-
opean Society for Intravenous Aneaesthesia, eurosiva.eu)
pharmacokinetic simulation programme. This software also specified
the blood concentrations of propofol, following the Marsh
3-compartment model, which were used as targets for the pharma-
cokinetic model providing target-controlled infusion. After an initial
propofol target effect-site concentration of 0.6 µgmL−1, concentration
wasgradually increasedby increments of 0.3 µgmL1, andRamsay score
was assessed after each increment: a further increment occurred if the
Ramsay score was <5. The mean estimated effect-site and plasma
propofol concentrations were kept stable by the pharmacokinetic
model delivered via the TIVA Trainer infusion pump. Ramsay level 5
was achieved when participants stopped responding to verbal com-
mands, were unable to engage in conversation, andwere rousable only
to physical stimulation. Once both anaesthesiologists and the anaes-
thesia nurse all agreed that Ramsay sedation level 5 had been reached,
and participants stopped responding to both tasks, data acquisition
was initiated. The mean estimated effect-site propofol concentration
was 2.48 (1.82–3.14) µgmL−1, and the mean estimated plasma propofol
concentration was 2.68 (1.92–3.44) µgmL−1. Mean total mass of pro-
pofol administered was 486.58 (373.30–599.86) mg. These values of
variability are typical for the pharmacokinetics and pharmacody-
namics of propofol. Oxygen was titrated to maintain SpO2 above 96%.

At Ramsay 5 level, participants remained capable of spontaneous
cardiovascular function and ventilation. However, the sedation pro-
cedure did not take place in a hospital setting; therefore, intubation
during scanning could not be used to ensure airway security during
scanning. Consequently, although two anaesthesiologists closely
monitored each participant, scanner time was minimised to ensure
return to normal breathing following deep sedation. No state changes
ormovementwere noted during the deep sedation scanning for any of
the participants included in the study17. Propofol was discontinued
following the deep anaesthesia scan, and participants reached level 2
of the Ramsey scale approximately eleven minutes afterwards, as
indicated by clear and rapid responses to verbal commands.

As previously reported17, once in the scanner participants were
instructed to relax with closed eyes, without falling asleep. Resting-
state functional MRI in the absence of any tasks was acquired for
8minutes for each participant. A further scanwas also acquired during
auditory presentation of a plot-driven story through headphones
(5min long). Participants were instructed to listen while keeping their
eyes closed. The present analysis focuses on the resting-state data
only, from the Awake and Deep scanning; the story scan data have
been published separately165 and will not be discussed further here.

As previously reported17, MRI scanning was performed using a
3-Tesla Siemens TimTrio scanner (32-channel coil), and 256 functional
volumes (echo-planar images, EPI) were collected from each partici-
pant, with the following parameters: slices = 33, with 25% inter-slice

gap; resolution = 3mm isotropic; TR= 2000ms;TE= 30ms;flip angle =
75°; matrix size = 64 × 64. The order of acquisition was interleaved,
bottom-up. Anatomical scanningwas alsoperformed, acquiring a high-
resolution T1- weighted volume (32-channel coil, 1mm isotropic voxel
size) with a 3D MPRAGE sequence, using the following parameters:
TA = 5min, TE = 4.25ms, 240 × 256 matrix size, 9° flip angle17.

Functional MRI preprocessing and denoising
Preprocessing of the functional MRI data for all datasets except HCP
followed the same standard workflow as in our previous studies62, and
was implemented in the CONN toolbox (http://www.nitrc.org/
projects/conn), version 17f167. The following steps were performed:
removal of the first 5 volumes to allow for steady-state magnetisation;
functional realignment, motion correction and spatial normalisation
to Montreal Neurological Institute (MNI-152) standard space with
2 × 2 × 2mm isotropic resolution. Denoising followed the anatomical
CompCor (aCompCor) method of removing cardiac and motion arti-
facts, by regressing out of each individual’s functional data the first 5
principal components corresponding to white matter signal, and the
first 5 components corresponding to cerebrospinal fluid signal, as well
as six subject-specific realignment parameters (three translations and
three rotations) and their first- order temporal derivatives, and nui-
sance regressors identifiedby the artifact detection softwareart168. The
subject-specific denoised BOLD signal time-series were linearly
detrended and band-pass filtered between 0.008 and 0.09Hz to
eliminate both low-frequency drift effects and high-frequency noise.
No spatial smoothing was applied, since all analyses were performed
on parcellated data, whereby the signal was averaged across voxels
belonging to the same ROI (see below, section Node definition).

For the HCP test–retest dataset, we instead used the minimally
preprocessed functional data made available by HCP, which were
further denoised with FIX-ICA59,60. This popular approach is intended
to remove non-BOLD noise arising from multiple known sources,
including spatially specific noise from head motion, cardiac pulsation,
breathing and scanner artifacts. Using different denoising methods
enables us to ensure thatourfinal results are not specific to a particular
way of denoising rs-fMRI data, thereby ensuring their robustness and
generalisability.

A further, particularly controversial denoising step is global signal
regression (GSR): although some authors suggest that GSR may
improve subsequent construction of functional brain networks41,50,
others did not find such an effect40,43 or even reported GSR as
deleterious42,48. Here, we therefore evaluated the performance of dif-
ferent network construction pipelines on two versions of each dataset:
with the application of GSR, and without the application of GSR.

Node definition
When deciding on how to turn preprocessed and denoised fMRI data
into a brain network, the first decision that needs to be made is: what
are the elements of the network? Different approaches exist in the
literature, from the use of each voxel as a node to maximise spatial
resolution, to theuseof IndependentComponentsAnalysis and similar
data-driven techniques to obtain study- or even subject-specific clus-
terings of brain signals, which may be spatially extended or even
nested within each other, coalescing and splitting over time. Although
eachof these approaches hasunquestionablemerits, perhaps themost
commonapproach for defining nodes in humannetwork neuroscience
is the use of parcellations: pre-defined assignments of spatially con-
tiguous voxels into regions-of-interest (ROIs) – typically on the ground
of neuroanatomical/cytoarchitectonic considerations, or shared
function, or some combination thereof. A wide variety of parcellations
exist24, and recent work reported how the choice of parcellation
scheme can affect aspects such as structure-function similarity
estimation153 but also the intra-subject and inter-subject variability of
the functional connectome and whole-brain resting-state
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modelling48,169. Parcellation schemes vary on twomain dimensions: the
criterion based on which clusters are identified (e.g., based on neu-
roanatomy, or functional considerations, or a combination thereof
frommultiplemodalities) and thenumber ofROIs– ranging froma few
tens to thousands. The number of ROIs involves a trade-off between
the superior spatial resolution of finer-grained parcellations, and the
robustness and increased signal-to-noise ratio that derive from spatial
averaging of many neighbouring voxels.

Here, we considered both of these dimensions: we employed
parcellations spanning three scales (approximately 100, 200 and 300-
400 nodes; see Table S1 for specific details) and obtained based on
anatomical, functional, or multimodal considerations, or from spatial
Independent Components Analysis, across one or multiple scales
(summarised in Table S1).

Lausanne multi-scale atlas. We consider the multi-scale anatomical
Lausanne (also known as “Cammoun”) atlas with 129, 234 and 463
cortical and subcortical nodes obtained by subdividing the sulcus-
based Desikan-Killiany atlas170,171.

Schaefer+Tian multi-scale atlas. We also consider the functional
multi-scale atlas developed by Schaefer and colleagues172 which com-
bines local gradients and global similarity across task-based and
resting-state functional connectivity. Following our previous work, we
included versions with 100, 200 and 400 cortical regions, respectively
supplemented with 16, 32 or 54 subcortical regions from the recent
subcortical functional atlas developed by Tian and colleagues173.

Single-scale atlases. We also include three widely used single-scale
atlases: (i) the Automated Anatomical Labelling (AAL) atlas, an anato-
mical parcellation with 90 cortical and subcortical regions174; (ii) the
Brainnetome atlas, which comprises 210 cortical and 36 subcortical
regions, identified by combining anatomical, functional and meta-
analytic information175; (iii) and the Glasser atlas comprising 360 cor-
tical regions identified by combining multi-modal information about
cortical architecture, function, connectivity and topography176. The
volumetric Glasser parcellation in MNI-152 space made available by
Preti and Van de Ville177 was used. Since the Glasser atlas is cortical-
only, it was also supplemented with the 54-region version of the Tian
atlas, in order to include a comparable number of subcortical regions,
resulting in 414 ROIs.

Spatial independent components analysis. Finally, we include par-
cellations obtained from group spatial Independent Components
Analysis (ICA) at different dimensionality. We used the independent
components generated and made available by the Human Con-
nectome Project consortium, by performing spatial-ICA on the com-
bined cortical (vertexwise) and subcortical (voxelwise) rs-fMRI
timeseries from 820 HCP participants using FSL MELODIC tool178,179.
These authors performed spatial-ICA at several different dimension-
alities, from 15 to 300. Dimensionality corresponds to the number of
independent spatial components to be identified by MELODIC, which
is analogous to the number of discrete parcels in an atlas-based par-
cellation. Hereweuseddimensionalities 100, 200 and 300, as themost
compatible with the dimensionality of the other parcellations included
in the present study. ICA differs from atlas-based methods in several
key respects. Unlike atlas parcels, ICA maps are not binary but rather
consist of continuous weights: some parts of the brain will contribute
more or less to a given spatial component. As a result, ICA maps are
spatially overlapping, and need not be spatially contiguous.

For atlas-based parcellations, the average denoised BOLD time-
series across all voxels belonging to a given ROI were extracted, for
each individual. For the ICA parcellations, we applied FSL Dual
Regression to obtain the time-course associated with each spatial
independent component map of each individual180. Therefore, for the

ICA parcellations, nodes do not represent discrete spatial locations,
but rather different weightings of spatially extended and possibly
overlapping independent components.

For all but the HCP dataset, we used parcellations made available
in volumetricMNI-152 space. For theHCP test–retest dataset, given the
higher spatial resolution, we opted to use a surface-based parcellation
approach instead – thereby enabling us to verify that our final results
are not specific to a given parcellation approach.

Functional connectivity
We considered two alternative ways of quantifying the interactions
between regional BOLD signal timeseries. First, we used Pearson cor-
relation, whereby for each pair of nodes i and j, their functional con-
nectivity Fij was given by the Pearson correlation coefficient between
the timecourses of i and j, over the full scanning length. Second, we
also used the mutual information I, which quantifies the inter-
dependence between two random variables X and Y, and is defined as
the average reduction in uncertainty about X when Y is given (or vice
versa, since this quantity is symmetric):

IðX ;Y Þ=HðX Þ+HðY Þ�HðX ,Y Þ=HðX Þ�HðX jY Þ ð1Þ

With H(X) being the Shannon entropy of a variable X. Unlike
Pearson correlation, mutual information does not provide negative
values: both strong positive and strong negative correlations will be
mapped (non-linearly) onto high values of MI. For consistency with
previous work62, the values in each individual matrix of mutual infor-
mation were divided by the maximum value in the matrix, thereby
rescaling them to lie between zero and unity.

Filtering schemes
Both Pearson correlation and MI provide continuous values for the
statistical association between pairs of nodes, resulting in a dense
matrix of functional connections. Therefore, some form of filtering is
typically employed to remove spurious connections that are likely to
be driven by noise, and obtain a sparse network of functional con-
nectivity. However, there is no gold standard approach to decide
which connections to retain, and different filtering schemes have
emerged in the literature. Here, we considered 8 different edge fil-
tering schemes (Table S2), described below. The Brain Connectivity
Toolbox51,52 was used to implement absolute and proportional
thresholds andquantify networkdensity, aswell as the networks’mean
clustering coefficient and characteristic path length (Fig. S33-S35).

Absolute thresholding. The simplest approach to decide which edges
to retain is to accept or reject edges based on a pre-determined
minimum acceptable weight. However, there is no consensus in the
literature about which threshold one should adopt. Here, we con-
sidered absolute threshold values of 0.3 or 0.5 (for Pearson correla-
tion, only positively-valued edges were considered).

Proportional thresholding. Absolute thresholding can produce net-
works with very different densities, which can introduce confounds in
subsequent network analyses. Therefore, a popular approach simply
retains a fixed proportion of the strongest edges. However, there is
once again no consensus in the literature on the correct proportion of
edges to retain. We therefore employed three different density levels,
in the range commonly reported in the literature: fixed density (FD) of
5%, 10% and 20% of the strongest edges.

Structural density matching. The main problem with proportional
thresholding is the selection of an appropriate target density – espe-
cially since this may vary depending on the number of nodes in the
network. To address this issue in a principled manner, we recently
introduced a method termed structural density matching (SDM)62,
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whereby the proportion of functional edges to retain corresponds to
the density s of the corresponding structural connectome (the net-
work of anatomical connectivity obtained from the group-averaged
diffusion-weighted MRI data from the Human Connectome Project181.
In other words, SDM ensures that functional and structural networks
obtained using the sameparcellation have the samedensity, insteadof
using an arbitrary target density. For the ICA parcellations, since each
component map is spatially extended over the entire cortex and sub-
cortex, we used instead the density of the structural connectome
obtained from the Schaefer parcellation at the samenumber of parcels
(100, 200 or 300), in order to obtain results that are comparable to the
other parcellations.

Efficiency cost optimisation. The efficiency cost optimisation (ECO) is
designed to optimise the trade-off between the network’s overall
efficiency (sum of global and average local efficiency) and its wiring
cost (number of edges)64, by ensuring that the network maximises the
following target function J:

J =
Eg + El

ρ
ð2Þ

With Eg and El being the global and mean local efficiency of the
network, respectively. This filtering scheme produces sparse graphs
while still preserving their structure, as demonstrated by its empirical
success at discriminating between different graph topologies64. Here,
we obtained ECO-thresholded graphs by setting a proportional
threshold such that the average node degree would be 3, since pre-
vious analytic and empirical results indicate that the optimal density
corresponds to enforcing an average node degree approximately
equal to 364.

Orthogonal minimum spanning trees. OMST63,92 is another data-
driven approach intended to optimise the balance between efficiency
anddensity of the network,while also ensuring that the network is fully
connected. Specifically, the method involves three steps: (1) identify-
ing theminimumset of edges such that eachnode canbe reached from
each other node – known as the minimum spanning tree (MST); (2)
identifying an alternative (orthogonal)MST, and combining it with the
previous one; (3) repeating steps (1) and (2) until the network formed
by the progressive addition of orthogonal MSTs optimises a global
cost function defined as Eg – Cost (with Cost corresponding to the
ratio of the total weight of the selected edges, divided by the total
strength of the original fully weighted graph). This approach produces
plausibly sparse networks without imposing an a-priori level across all
subjects, and it has been shown that the resulting networks provide
higher recognition accuracy and reliability than many alternative fil-
tering schemes63,92.

Binarisation. For allfiltering schemes consideredhere, edges thatwere
not selectedwere set to zero. However, edges thatwere included in the
network could be weighted or unweighted. In the case of unweighted
(binary) networks, we set all non-zero edges to unity. Otherwise, their
original weight was retained.

Topological distance as Portrait Divergence
To quantify the difference between network topologies, we used the
recently developed Portrait Divergence (PDiv). The Portrait Diver-
gence between twographsG1 andG2 is the Jensen-Shannondivergence
between their “network portraits”, which encode the distribution of
shortest paths of the two networks53. Specifically, the network portrait
is a matrix B whose entry Blk, l =0, 1, …, d (with d being the graph
diameter), k = 0, 1,…, N – 1, is the number of nodes having k nodes at
shortest-path distance l.

Thus, to compute the Portrait Divergence one needs to compute
the probability P(k, l) (and similarly Q(k, l) for the second graph) of
randomly choosing two nodes at distance l and, for one of the two
nodes, to have k nodes at distance l:

Pðk,lÞ=PðkjlÞPðlÞ= 1
N
Blk

1
P

cn2
c

XN

k0 =0

k0Blk0 ð3Þ

where nc is the number of nodes in the connected component c. Then,
the Portrait Divergence distance is defined using the Jensen-Shannon
divergence (an information-theoretic notion of distance):

DðG1,G2Þ=
1
2
KLðPjjMÞ+ 1

2
KLðQjjMÞ ð4Þ

whereM = (P +Q)/2 is the mixture distribution of P andQ, and KL(⋅||⋅) is
the Kullback-Leibler divergence.

The Portrait Divergence offers three key advantages that make it
well suited for the present investigation. First, it is based on network
portraits, which do not change depending on how a graph is repre-
sented. Comparing network topologies based on such “graph invar-
iants” is highly desirable, because it removes the potential confoundof
encoding format. Second, the Portrait Divergencedoes not require the
networks in question to have the same number of nodes or edges, and
it can be applied to both binary and weighted networks – making it
ideally suited for the applications of the present study. And finally, the
Portrait Divergence is not predicated on a single specific network
property, but rather it takes into account all scales of structure within
networks, from local structure to motifs to large scale connectivity
patterns: that is, it considers the topology of the network as a whole53.

For each subject, at each timepoint, we obtained one brain net-
work following each of the possible combinations of steps above (768
distinct pipelines in total).

For each pipeline, we then computed the Portrait Divergence
between networks obtained from the same subject at different points
in time, and subsequently obtained a group-average value of Portrait
Divergence for each pipeline.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The NYU dataset is freely
available from the International Neuroimaging Data-Sharing Initiative
(INDI) (http://www.nitrc.org/projects/nyu_trt). The Cambridge datasets
are available upon request from author EAS (email: eas46@cam.ac.uk).
The Western propofol dataset is available on the OpenNeuro data
repository (doi: 10.18112/openneuro.ds003171.v2.0.1). The HCP data are
available from https://www.humanconnectome.org/. The AAL atlas is
available online at https://www.gin.cnrs.fr/en/tools/aal/. The Brainne-
tome atlas is available online at https://atlas.brainnetome.org/download.
html. The Glasser parcellation is available online at https://balsa.wustl.
edu/study/show/RVVG. The Lausanne multi-scale atlas can be obtained
fromhttps://github.com/mattcieslak/easy_lausanne. The Schaefermulti-
scale atlas is available at https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal.
The Tian subcortical multi-scale atlas is available at https://github.com/
yetianmed/subcortex. The Group-ICA parcellations are available from
https://www.humanconnectome.org/. Source data are provided with
this paper.

Code availability
The CONN toolbox is freely available online (http://www.nitrc.org/
projects/conn). Python (v3.6) code for the portrait divergence is freely
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available online (https://github.com/bagrow/network-portrait-
divergence). MATLAB (v2019a) code for the Orthogonal Minimum
Spanning Tree thresholding is freely available online (https://github.
com/stdimitr/topological_filtering_networks). The Brain Connectivity
Toolbox code used for graph-theoretical analyses is freely available
online (https://sites.google.com/site/bctnet/). FSL (FMRIB Software
Library) v6 toolbox is freely available for academic research at https://
fsl.fmrib.ox.ac.uk/.
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